
GCPC 2014

24.05.2014

The Problem Set

No Title
A Algebraic Teamwork
B Beam me out!
C Bounty Hunter
D Connected Caves
E Equator
F Gold Rush
G Jewelry Exhibition
H JuQueen
I Laser Cutting
J Not a subsequence
K Pizza voting

Good luck and have fun!

hosted by sponsored by



These problem texts are copyright by the jury.
They are licensed under the Creative Commons Attribution-Share
Alike license version 3.0; The complete license text can be found at:
http://creativecommons.org/licenses/by-sa/3.0/legalcode

2

http://creativecommons.org/licenses/by-sa/3.0/legalcode


Problem A
Algebraic Teamwork

The great pioneers of group theory and linear algebra want to cooperate and join their theories.
In group theory, permutations – also known as bijective functions – play an important role. For a
finite set A, a function σ : A→ A is called a permutation of A if and only if there is some function
ρ : A→ A with

σ(ρ(a)) = a and ρ(σ(a)) = a for all a ∈ A.

The other half of the new team – the experts on linear algebra – deal a lot with idempotent functions.
They appear as projections when computing shadows in 3D games or as closure operators like the
transitive closure, just to name a few examples. A function p : A → A is called idempotent if and
only if

p(p(a)) = p(a) for all a ∈ A.

To continue with their joined research, they need your help. The team is interested in non-idempotent
permutations of a given finite set A. As a first step, they discovered that the result only depends on
the set’s size. For a concrete size 1 ≤ n ≤ 105, they want you to compute the number of permutations
on a set of cardinality n that are not idempotent.

Input

The input starts with the number t ≤ 100 of test cases. Then t lines follow, each containing the set’s
size 1 ≤ n ≤ 105.

Output

Output one line for every test case containing the number modulo 1 000 000 007 = (109 + 7) of
non-idempotent permutations on a set of cardinality n.

Sample Input Sample Output
3
1
2
2171

0
1
6425

3



This page is intentionally left (almost) blank.

4



Problem B
Beam me out!

King Remark, first of his name, is a benign ruler and every wrongdoer gets a second chance after
repenting his crimes in the Great Maze!
Today’s delinquent is a renowned computer scientist, but his fame didn’t do him any good after he
declined to do research on the so called and soon-to-be-famous Remark’s algorithms! Those strange
randomized algorithms may run indefinitely long (or even never terminate) and may or may not
produce a right answer if terminated.
Handily, the Great Maze got recently a major upgrade with the newest beaming technology which
made all doors obsolete: After the delinquent says the magic words “I was wrong and will never
disappoint king Remark again!” he will be immediately beamed to the next room. It will be chosen
randomly from a list of possible goal rooms.
The Great Maze consists of n rooms numbered 1 to n. Every detainee starts his quest for pardon in
room 1 and hopes to get to the throne room n in which he will receive his pardon. If he ends up in
a room, whose list of goal rooms is empty, his tour is over; through he could surely say the magic
words again and again – that would not hurt, but would not help him either.
Great king Remark, as most of the kings, doesn’t like surprises and summoned you to answer two
questions: Is it guaranteed, that the criminal will get to the throne room and is there a limit of
beaming operations after which the game is over for sure.
You know better, than to disappoint the great king with a wrong answer or no answer at all, don’t
you?

Input

The input contains a single test case. It starts with a line consisting of an integer 2 ≤ n ≤ 50 000
– the number of rooms in the Great Maze. For each of the rooms 1 to n − 1, two lines will follow
representing the corresponding list of the goal rooms (in order 1 to n− 1). Bear in mind, that after
reaching the throne room n the quest is over. Thus, the list of the throne room is not a part of the
input.
The first of these two lines will contain an integer 0 ≤ m ≤ n – the number of goal rooms on the list.
The second line will contain a list of m goal rooms or an empty string, if m = 0. Each list will be
sorted in strictly ascending order (this implies every number on the list will be unique) and consist
from integers between 1 and n, inclusive.
The total number of goal rooms summed over all lists will not exceed 106.

Output

For each test case a line consisting of two words:

• the first word must be “PARDON”, if the probability for the prisoner getting to the throne room
during his random walk is 100%, or “PRISON” otherwise.

• the second word must be “LIMITED”, if a limit for the number of beaming operations exists, or
“UNLIMITED” otherwise.

Sample Input I Sample Output I
3
2
2 3
1
3

PARDON LIMITED

Sample Input II Sample Output II
3
2
2 3
0

PRISON LIMITED

(More sample inputs follow on the next page.)

5



Sample Input III Sample Output III
3
2
2 3
2
1 3

PARDON UNLIMITED

Sample Input IV Sample Output IV
3
2
2 3
1
2

PRISON UNLIMITED

6



Problem C
Bounty Hunter

Spike is a bounty hunter and he is currently tracking a criminal! To investigate he uses his spaceship,
the Swordfish II, and travels to N different places on 2D Euclidean space before returning to his
crew at the starting location with all the information he has gathered. The starting location is the
leftmost place (with the lowest x-coordinate) and Spike wants to travel to every other place before
returning. However space fuel costs a lot of Woolongs and Spike would rather spend his money on
special beef with bell peppers. Therefore he wants to travel the minimum possible distance.
On top of that he is being chased by the Red Dragon crime syndicate. To make sure they don’t catch
him he can only visit places in increasing order of their x-coordinate until he reaches the rightmost
place (with the largest x-coordinate), then he can turn around and visit places in decreasing order
of their x-coordinate until he reaches his starting location again.

Input

The input starts with an integer T (1 ≤ T ≤ 100) specifying the number of test cases that follow.
Each test case consists of an integer N (2 ≤ N ≤ 512) specifying the number of places in the
tour. The coordinates of these places are given as integers in the next N lines, x-coordinate first,
y-coordinate second (0 ≤ x, y ≤ 5000). The places are given in ascending order of the x-coordinate.
Every place has a unique x-coordinate.

Output

For each test case, output on a single line the minimum travel distance needed to complete the tour.
Your output should have an absolute or relative error of at most 10−2.

Sample Input Sample Output
2
5
0 1
1 2
2 0
3 2
4 1
3
100 1
200 1
300 1

9.300563079746
400

7



This page is intentionally left (almost) blank.

8



Problem D
Connected Caves

You’re an intern at Greedy Cave Plundering Corporation. Your new job is to help with one of
GCPC ’s projects: extracting valuable gemstones from a network of connected caves.
The history of the project so far:

• Tom, one of the project managers, has hired Jill, a gemstone expert. She has already surveyed
these caves and determined the value of all gemstones in each cave.

• Ruby, another project manager (PM), has been busy “guesstimating” a time frame, the budget
and possible profits for this project.

• Evelyn and Jerry (also PMs) have hired two cave diggers and instructed them to extract the
gemstones.

• The cave diggers needed equipment to extract the gemstones and transport them to the surface.
So Jimmy (another PM) ordered some machines. Sadly, he did not communicate well with the
cave diggers - he bought machines that are way too big for the current passage ways between
caves.

• To fix this, Jimmy was fired and James, his successor, has ordered a very big drilling machine,
so the cave diggers can widen the passage ways. However, James was fearful of cutting into
his salary bonus, so he bought the cheapest machine he could find. Soon, after widening the
passage way from the surface into cave 1, the cave diggers found out that the new drilling
machine is very heavy and not so powerful, so it can only be used to widen a passage way that
goes downwards. Once it has reached a lower cave, it can not be carried back up because of
its weight.

• This is when Alice, the project manager in charge of budget planning, announced she would
ignore further requests for more equipment.

• In an eight hour meeting discussing the problems of the project, it was decided to limit the
project expenses. So, if further drilling would hurt profits or if the drilling machine reaches a
cave where it can not go on, it will just be abandoned. Using the other machines, the cave
diggers will then be able to harvest at least some of the gemstones. Afterwards, the dig site
will probably be sold to another company. Ruby is already thinking about hiring her brother
as a sales expert...

This is where you come in. Tom has hired you to determine which passage ways should be widened
and thereby which caves should be visited to maximize profits. Widening a passage way requires
energy, materials and so on. You have to consider these costs. You will be given a map of all caves
and passage ways. The map was created by the cave diggers, so it should be accurate. It contains
only passage ways the drilling machine can handle, including the correct drilling direction. All caves
in the map are reachable from cave one.

Input

The input starts with a line containing T , the number of test cases (1 ≤ T ≤ 10).
Each test case starts with a line containing two integers: N , the number of caves, and E, the number
of passage ways (1 ≤ N ≤ 2 · 104; 0 ≤ E ≤ 105).
The second line contains N integers v1 v2 . . . vN . vi describes the value of all gemstones in cave i
(0 ≤ vi ≤ 104).
Each of the next E lines contains three integers: ae be ce. Such a line represents one of the possible
direct passage ways from cave ae to cave be, widening this passage way will cost ce (1 ≤ ae, be ≤ N ;
0 ≤ ce ≤ 104). It is guaranteed that the input contains only valid digging directions, i.e. cave be will
be strictly deeper than ae.
You always start from cave number 1, because the digging machine is already there and there are no
caves above.

Output

Output two lines for every test case. In the first line print two integers P and C, where P is the
profit of the best possible route from top to bottom and C is the number of visited caves on that
path. In the second line print the IDs of those caves, ordered from top to bottom.
If there are multiple solutions with optimal profit, print any.

9



Sample Input Sample Output
3
1 0
10
4 3
10 20 30 40
1 2 19
1 3 23
1 4 34
4 4
10 20 30 40
1 2 10
2 4 20
1 3 20
3 4 10

10 1
1
17 2
1 3
50 3
1 3 4

10



Problem E
Equator

In a galaxy far away, the planet Equator is under attack! The evil gang Galatic Criminal People
Cooperation is planning robberies in Equator’s cities. Your help is needed! In order to complete your
training for becoming a lord of the dark side you should help them deciding which cities to rob.
As the name says, the desert planet Equator only can be inhabited on its equator. So the gang lands
there at some point and travels into some direction robbing all cities on their way until leaving the
planet again.

I

I

I

I

I

I

But what is still open for them is to decide where to land, which direction to take, and when to
leave. Maybe they shouldn’t even enter the planet at all? They do not consider costs for traveling
or for running their ship, those are peanuts compared to the money made by robbery!
The cities differ in value: some are richer, some are poorer, some have better safety functions. So
the gang assigned expected profits or losses to the cities. Help them deciding where to begin and
where to end their robbery to maximize the money in total when robbing every city in between.

Input

The input starts with the number of test cases T ≤ 30. Each test case starts a new line containing
the number of cities 1 ≤ n ≤ 1 000 000. In the same line n integers ci follow. Each ci (0 ≤ i < n,
−1000 ≤ ci ≤ +1000) describes the money obtained when robbing city i, a negative ci describes the
amount of money they would lose.

Output

For each test case print one integer describing the maximum money they can make in total.

Sample Input Sample Output
3
3 1 2 3
8 4 5 -1 -1 1 -1 -1 5
2 -1 -1

6
14
0

11



This page is intentionally left (almost) blank.

12



Problem F
Gold Rush

Alice and Bob are on an adventure trip. Deep in the woods they discover a mysterious deep cave
which they enter flutteringly. They find an old console with a giant bar of gold in it. On the bar,
there is a number n. Both tried to carry the gold out the cave, but it was still to heavy for one of
them.
Suddenly a little fairy appears in the corner of the cave and approaches Alice and Bob: “This gold
is heavy. It weights 2n femto-grams (10−15) and n can reach 62.”
Bob answered: “What luck! Alice’s knapsack can carry up to a femto-grams and mine b femto-grams
with a+ b = 2n.” Alice interjected: “But how can we divide the gold?”
Fairy: “I can help you with a spell that can burst one piece of gold into two equally weighted ones.
But for each single spell, the cave will be locked one additional day.”
Alice consults with Bob to use the help of the fairy and take all of the gold. How long will they be
trapped if they are clever?

Input

The input starts with the number t ≤ 1000 of test cases. Then t lines follow, each describing a single
test case consisting of three numbers n, a and b with a, b ≥ 1, a+ b = 2n, and 1 ≤ n ≤ 62.

Output

Output one line for every test case with the minimal number of days that Alice and Bob are locked
in the cave.

Sample Input Sample Output
3
2 2 2
2 1 3
10 1000 24

1
2
7

13



This page is intentionally left (almost) blank.

14



Problem G
Jewelry Exhibition

To guard the art jewelry exhibition at night, the security agency has decided to use a new laser beam
system, consisting of sender-receiver pairs. Each pair generates a strip of light of one unit width
and guards all objects located inside the strip. Your task is to help the agency and to compute for
each exhibition room the minimum number of sender-receiver pairs which are sufficient to protect
all exhibits inside the room.
Any room has a rectangle shape, so we describe it as an [0, N ]× [0,M ] rectangle in the plane. The
objects we need to guard are represented as points inside that rectangle. Each sender is mounted
on a wall and the corresponding receiver on the opposite wall in such a way that the generated strip
is a rectangle of unit width and length either N or M . Since the new laser beam system is still
not perfect, each sender-receiver pair can only be mounted to generate strips the corners of which
have integer coordinates. An additional drawback is that the sender-receiver pairs can protect only
items inside the strips, but not those lying on their borders. Thus, the security agency arranged the
exhibits in such a way that both coordinates of any point representing an exhibit are non-integers.
The figure below (left) illustrates eight items arranged in [0, 4]× [0, 4] (the second sample input). In
the room, up to eight sender-receiver pairs can be mounted. The figure to the right shows an area
protected by three sender-receiver pairs.

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

Input

The input starts with the number of exhibition rooms R ≤ 10. Then the descriptions of the R
rooms follow. A single description starts with a single line, containing three integers: 0 < N ≤ 100,
0 < M ≤ 100, specifying the size of the current room and 0 < K ≤ 104, for the number of exhibits.
NextK lines follow, each of which consists of two real numbers x, y describing the exhibit coordinates.
You can assume that 0 < x < N , 0 < y < M and that x and y are non-integer.

Output

For every room output one line containing one integer, that is the minimum number of sender-receiver
pairs sufficient to protect all exhibits inside the room.

Sample Input Sample Output
2
1 5 3
0.2 1.5
0.3 4.8
0.4 3.5
4 4 8
0.7 0.5
1.7 0.5
2.8 1.5
3.7 0.5
2.2 3.6
2.7 2.7
1.2 2.2
1.2 2.7

1
3

15



This page is intentionally left (almost) blank.

16



Problem H
JuQueen

JuQueen is the super computer with the best performance allover Germany. It is on rank 8 in the
famous top500 list with its 458 752 cores. It draws a lot of energy (up to 2 301 kW), so we want to
reduce that by underclocking the unused cores.
The cluster scheduling algorithm which is in charge of distributing jobs over the nodes and cores of
a cluster will issue the following speedstepping commands:

• change X S changes the frequency of core X by S steps

• groupchange A B S changes the frequency of every core in range [A,B] by S steps

• state X returns the current state of core X

To be safe for the future, your program should be able to handle 4 587 520 cores. The initial frequency
for each core is 0.

Input

The input contains a single test case. It starts with a line containing three integers C, N , and O,
where C is the number of cores (1 ≤ C ≤ 4 587 520) to manage, N is the number of frequency steps for
each core (1 ≤ N ≤ 10 000) and O is the number of operations in the test program (1 ≤ O ≤ 50 000).
Then follow O lines, each containing one command as described above. X, A and B are 0-based
IDs of the cores (0 ≤ A,B,X < C; A ≤ B). S is an integer number of steps, possibly negative
(−N ≤ S ≤ +N).
Both, the change and the groupchange command will increase (or decrease) in single steps and stop
as soon as one core in the group reaches the minimal (0) or maximal frequency (N).

Output

Output one line for every operation in the input. For change and groupchange print the changed
number of steps, for state print the current state.

Sample Input I Sample Output I
10 10 5
state 0
groupchange 2 9 7
state 9
groupchange 0 2 10
change 0 -5

0
7
7
3
-3

Sample Input II Sample Output II
4587520 10000 5
groupchange 0 4587010 9950
groupchange 23 4587000 42
groupchange 4710 4587001 -1000
state 1234560
groupchange 6666 3060660 10000

9950
42
-1000
8992
1008

17



This page is intentionally left (almost) blank.

18



Problem I
Laser Cutting

Jakob’s laptop broke down, so he decided to build a new one by himself. After getting all the
electronic parts, he needs to build a case. He decides to build one out of plywood, cut into pieces
and glued together. He learns that, using the laser cutter of the FAU FABLAB, he can cut plywood
sheets simply by creating a vector drawing. After some work, he has made a vector drawing. However,
his drawing and calculating skills are rather poor, so he wants you to check his drawing.

Figure 1 – Jakob’s Laptop

The drawing consists of a number of polylines that are supposed to be non-self-intersecting polygons
(which you have to check). To make things easier, all the lines that make up the polylines are parallel
to either the x- or the y axis. Also, two polygons should not touch or intersect. Lastly, one part
may contain some holes for plugging in other parts or electronics. However, a hole does not contain
other parts or other holes. As parts and holes are both described by polygons, this means that any
one polygon may be inside one other polygon, but not inside two other polygons.

Input

The input starts with the number of test cases t (with t ≤ 10), on a line. Each test case starts
with the number of polylines p (with p < 50), on a line. Every polyline starts with the number of
coordinates n, with 5 ≤ n ≤ 50. The next line contains 2n numbers, the x and y coordinates of
the points on the polyline. You may assume that, given any two neighbouring points of a polyline,
exactly one of their coordinates differ, i.e. all parts of a polyline are parallel to either x or y axis,
and have non-zero length. The coordinates are integers between 0 and 106.

Output

For each test case: If a polyline does not intersect with itself only on its first and last point, print
“INVALID POLYGON”. Else, if two polygons touch or intersect, print “INTERSECTING POLYGONS”. Else,
if polygons are nested too deeply, print “INVALID NESTING”. Lastly, if the description is correct, print
“CORRECT”.

(Sample Input and Output can be found on the next page.)

19



Figure 2 – Drawings of the four sample test cases.

Sample Input Sample Output
4
3
9
0 0 0 3 2 3 2 5 5 5 5 2 3 2 3 0 0 0
5
1 1 1 2 2 2 2 1 1 1
5
3 3 3 4 4 4 4 3 3 3
1
6
0 0 0 2 0 1 1 1 1 0 0 0
3
5
2 2 2 3 3 3 3 2 2 2
5
1 1 1 4 4 4 4 1 1 1
5
0 0 0 5 5 5 5 0 0 0
2
5
1 0 2 0 2 3 1 3 1 0
5
0 2 3 2 3 5 0 5 0 2

CORRECT
INVALID POLYGON
INVALID NESTING
INTERSECTING POLYGONS

20



Problem J
Not a subsequence

In this problem we consider strings over a fixed finite alphabet of size k. The alphabet contains the
first k characters from the list

a, b, c, . . . , z, A,B,C, . . . , Z, 0, 1, . . . , 9.

For every test case, we are given the value of k (notice that it cannot exceed 62), and consider only
strings consisting of the first k characters from the list.
Given a string s[1..n], we are interested in strings which are not its subsequences. Formally, a string
t[1..m] is a subsequence of a string s[1..n] when one can choose not necessarily contiguous indices
1 ≤ i1 < i2 < . . . im ≤ n such that t[1] = s[i1], t[2] = s[i2], ..., t[m] = t[im]. For example, acb is a
subsequence of babcaab. Now, given a string s[1..n], we would like to compute the smallest m such
that there is a string t[1..m], which is not a subsequence of s[1..n]. Additionally, we would like to
count the number of such shortest strings t[1..m]. As the latter number can be quite large, output
it modulo 109 + 7.

Input

The input starts with the number of test cases T ≤ 100. Then the descriptions of T test cases follow.
A single test case consists of a single line containing the size of the alphabet k (k ∈ [1, 62]) and the
string s[1..n] (n ∈ [1, 106]). The string consists of the first k characters from a–zA–Z0–9.

Output

For every test case output one line containing two numbers. The first number is the smallest m such
that there is a string t[1..m] consisting of the first k characters from a–zA–Z0–9, which is not a
subsequence of s[1..n]. The second number is the total count of such shortest strings t[1..m] modulo
109 + 7.

Sample Input Sample Output
3
2 abba
62 0123456789
3 aabbcbbcbabcbab

3 5
1 52
4 7

21



This page is intentionally left (almost) blank.

22



Problem K
Pizza voting

You are training for a programming contest with your team members Alice and Bob. After some
hours of hard training you want to have a break and eat pizza. You decided to order a big pizza for
all three of you. But you have to choose the kind of pizza you want to eat.
You know your favorite kind. But Alice and Bob have other constraints: Alice is on a diet so she
wants a pizza with less calories as possible. Bob is just mean to Alice so he votes for as much calories
as possible.

You decide to vote on which kind of pizza you order. As voting for one pizza wouldn’t lead anywhere,
you decide to use a veto voting. So everyone of you veto on pizza in a round robin manner. First
Alice vetos one pizza, then Bob vetos one, at last you are allowed to veto. Then Alice has the next
veto again, then Bob etc. until only one pizza is left.
Reminder: Alice will always veto the pizza with the most calories. Bob vetos always the pizza with
least calories. You try to be clever in such a way that your favorite pizza is the remaining pizza.

Input

The input starts with the number of pizzas n (1 ≤ n ≤ 100 000) and the index of your favorite pizza
p (1 ≤ p ≤ n) (1-indexed). Then follow the description of the n pizzas, each given in one line. The
description consists of one integer c (0 ≤ c ≤ 1 000 000) giving the calories followed by a single word
w giving the name of the pizza (up to 100 characters). The pizzas are ordered from low calories to
high calories and the number of calories is unique for every pizza.

Output

Output one line. “YES” if you can vote in a way, such that your pizza will be selected. “NO” if you
are not able to influence the vote in a way that your pizza will be selected.

Sample Input I Sample Output I
5 2
500 Margherita
600 Salami
700 Hawai
800 Speciale
900 Doener

YES

Sample Input II Sample Output II
5 4
500 Margherita
600 Salami
700 Hawai
800 Speciale
900 Doener

NO

23



This page is intentionally left (almost) blank.

24


